Recognize a Photo of a Form, Extract Key Fields and Business Information in Python

Filling out forms is a pain, but so is storing that information digitally. Using the Cloudmersive OCR API, you can easily recognize & scan key business fields and information from forms, and customize the data you want extracted by defining fields for the form. It’s easy to connect & use in 13+ common programming languages via the Cloudmersive API Console. Below, we’ll walk through connecting in Python.

First things first, you can install the Python SDK using the below command:

pip install cloudmersive-ocr-api-client

After that, you can copy in the remainder of the API call function. Make sure to review the documentation & copy in your Cloudmersive API key where indicated in the second snippet.

from __future__ import print_function
import time
import cloudmersive_ocr_api_client
from cloudmersive_ocr_api_client.rest import ApiException
from pprint import pprint
# Configure API key authorization: Apikey
configuration = cloudmersive_ocr_api_client.Configuration()
configuration.api_key['Apikey'] = 'YOUR_API_KEY'
# create an instance of the API class
api_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))
image_file = '/path/to/inputfile' # file | Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.
form_template_definition = NULL # object | Form field definitions (optional)
recognition_mode = 'recognition_mode_example' # str | Optional, enable advanced recognition mode by specifying 'Advanced', enable handwriting recognition by specifying 'EnableHandwriting'. Default is disabled. (optional)
preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'Auto'. Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image - including automatic unrotation of the image - before OCR is applied; this is recommended). Set this to 'None' if you do not want to use automatic image unrotation and enhancement. (optional)
diagnostics = 'diagnostics_example' # str | Optional, diagnostics mode, default is 'false'. Possible values are 'true' (will set DiagnosticImage to a diagnostic PNG image in the result), and 'false' (no diagnostics are enabled; this is recommended for best performance). (optional)
language = 'language_example' # str | Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)
try:
# Recognize a photo of a form, extract key fields and business information
api_response = api_instance.image_ocr_photo_recognize_form(image_file, form_template_definition=form_template_definition, recognition_mode=recognition_mode, preprocessing=preprocessing, diagnostics=diagnostics, language=language)
pprint(api_response)
except ApiException as e:
print("Exception when calling ImageOcrApi->image_ocr_photo_recognize_form: %s\n" % e)

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store