How to convert a scanned image into text in Python using OCR
Optical character recognition is truly a revolution for digitizing data. All you need is a scanner and the right software and suddenly all your documents are digital. So how can we set up this kind of system without spending all day doing it? That’s easy, we will use an API.
First, install the client with pip install:
pip install cloudmersive-ocr-api-client
And here is how to structure our function call for image_ocr_post:
from __future__ import print_functionimport timeimport cloudmersive_ocr_api_clientfrom cloudmersive_ocr_api_client.rest import ApiExceptionfrom pprint import pprint# Configure API key authorization: Apikeyconfiguration = cloudmersive_ocr_api_client.Configuration()configuration.api_key['Apikey'] = 'YOUR_API_KEY'# Uncomment below to setup prefix (e.g. Bearer) for API key, if needed# configuration.api_key_prefix['Apikey'] = 'Bearer'# create an instance of the API classapi_instance = cloudmersive_ocr_api_client.ImageOcrApi(cloudmersive_ocr_api_client.ApiClient(configuration))image_file = '/path/to/file' # file | Image file to perform OCR on. Common file formats such as PNG, JPEG are supported.recognition_mode = 'recognition_mode_example' # str | Optional; possible values are 'Basic' which provides basic recognition and is not resillient to page rotation, skew or low quality images uses 1-2 API calls; 'Normal' which provides highly fault tolerant OCR recognition uses 14-16 API calls; and 'Advanced' which provides the highest quality and most fault-tolerant recognition uses 28-30 API calls. Default recognition mode is 'Advanced' (optional)language = 'language_example' # str | Optional, language of the input document, default is English (ENG). Possible values are ENG (English), ARA (Arabic), ZHO (Chinese - Simplified), ZHO-HANT (Chinese - Traditional), ASM (Assamese), AFR (Afrikaans), AMH (Amharic), AZE (Azerbaijani), AZE-CYRL (Azerbaijani - Cyrillic), BEL (Belarusian), BEN (Bengali), BOD (Tibetan), BOS (Bosnian), BUL (Bulgarian), CAT (Catalan; Valencian), CEB (Cebuano), CES (Czech), CHR (Cherokee), CYM (Welsh), DAN (Danish), DEU (German), DZO (Dzongkha), ELL (Greek), ENM (Archaic/Middle English), EPO (Esperanto), EST (Estonian), EUS (Basque), FAS (Persian), FIN (Finnish), FRA (French), FRK (Frankish), FRM (Middle-French), GLE (Irish), GLG (Galician), GRC (Ancient Greek), HAT (Hatian), HEB (Hebrew), HIN (Hindi), HRV (Croatian), HUN (Hungarian), IKU (Inuktitut), IND (Indonesian), ISL (Icelandic), ITA (Italian), ITA-OLD (Old - Italian), JAV (Javanese), JPN (Japanese), KAN (Kannada), KAT (Georgian), KAT-OLD (Old-Georgian), KAZ (Kazakh), KHM (Central Khmer), KIR (Kirghiz), KOR (Korean), KUR (Kurdish), LAO (Lao), LAT (Latin), LAV (Latvian), LIT (Lithuanian), MAL (Malayalam), MAR (Marathi), MKD (Macedonian), MLT (Maltese), MSA (Malay), MYA (Burmese), NEP (Nepali), NLD (Dutch), NOR (Norwegian), ORI (Oriya), PAN (Panjabi), POL (Polish), POR (Portuguese), PUS (Pushto), RON (Romanian), RUS (Russian), SAN (Sanskrit), SIN (Sinhala), SLK (Slovak), SLV (Slovenian), SPA (Spanish), SPA-OLD (Old Spanish), SQI (Albanian), SRP (Serbian), SRP-LAT (Latin Serbian), SWA (Swahili), SWE (Swedish), SYR (Syriac), TAM (Tamil), TEL (Telugu), TGK (Tajik), TGL (Tagalog), THA (Thai), TIR (Tigrinya), TUR (Turkish), UIG (Uighur), UKR (Ukrainian), URD (Urdu), UZB (Uzbek), UZB-CYR (Cyrillic Uzbek), VIE (Vietnamese), YID (Yiddish) (optional)preprocessing = 'preprocessing_example' # str | Optional, preprocessing mode, default is 'Auto'. Possible values are None (no preprocessing of the image), and Auto (automatic image enhancement of the image before OCR is applied; this is recommended). (optional)try:# Convert a scanned image into textapi_response = api_instance.image_ocr_post(image_file, recognition_mode=recognition_mode, language=language, preprocessing=preprocessing)pprint(api_response)except ApiException as e:print("Exception when calling ImageOcrApi->image_ocr_post: %s\n" % e)
And there you have it. From there it’s just a matter of inputting your scanned document image and waiting for the text to be returned by the API. One important thing to note, this function is designed for scanned images. For photographs of documents, it is advised you use our photo-to-text function instead.